На правах рукописи

A

Осман Ахмад

Напряженно-деформированное состояние не полностью водонасыщенных оснований при статическом и динамическом воздействиях

2.1.2. Основания и фундаменты, подземные сооружения

Автореферат диссертации на соискание ученой степени кандидата технических наук

Москва-2023

Работа выполнена в федеральном государственном бюджетном образовательном учреждении высшего образования «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ).

Научный руководитель:	доктор технических наук Тер-Мартиросян Армен Завенович			
Официальные оппоненты:	Пшеничкина Валерия Александровна доктор технических наук, профессор Федеральное государственное бюджетное обра- зовательное учреждение высшего образования «Волгоградский государственный технический университет», кафедра «Строительные кон- струкции, основания и надёжность сооружений», заведующий кафедрой			
	Королева Ирина Владимировна кандидат технических наук, Федеральное государственное бюджетное обра- зовательное учреждение высшего образования «Казанский государственный архитектурно- строительный университет», кафедра «Основа- ния, фундаменты, динамика сооружений и ин- женерная геология», доцент			
Ведущая организация:	Федеральное государственное бюджетное обра- зовательное учреждение высшего образования «Тюменский индустриальный университет» (ФГБОУ ВО «ТИУ»)			

Защита состоится «27» сентября 2023 г. в 14:30 (по местному времени) на заседании диссертационного совета 24.2.339.05 (Д 212.138.14), созданного на базе федерального государственного бюджетного образовательного учреждения высшего образования «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ) по адресу: 129337, г. Москва, Ярославское шоссе, д. 26, зал Ученого Совета.

С диссертацией можно ознакомиться в библиотеке НИУ МГСУ и на сайте http://www.mgsu.ru.

Автореферат разослан «____» ____ 2023 г.

Ученый секретарь диссертационного совета Сидоров Виталий Валентинович

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования. Для решения задач в области проектирования, строительства и эксплуатации гражданских, промышленных и других объектов на слабых водонасыщенных глинистых грунтах более десяти метров толщиной, с модулем деформации до 10 МПа, и со степенью водонасыщения $0.8 < S_r \le 0.99$, следует производить учет статических, динамических и сейсмических воздействий на параметры массивов грунтов основания.

Расчет напряженно-деформированного состояния (НДС) грунтов основания при указанных выше воздействиях является основой для количественной оценки влияния взаимодействия сооружений с их основаниями и, таким образом, определения дополнительных осадок и кренов, касательных напряжений и избыточного порового давления и других последствий, возникающих в результате этих воздействий.

Таким образом, последствия данных воздействий влияют на несущие конструкции подземных и наземных частей зданий и сооружений. В некоторых случаях эти конструкции теряют свою эксплуатационную пригодность. В связи с этим, количественная оценка НДС слабых водонасыщенных ($0.8 < S_r \le 0.99$) оснований при статическом, динамическом и сейсмическом воздействиях является актуальной задачей строительства в настоящее время.

Степень разработанности темы исследования. Вопросами прогноза статических и дополнительных исследований оснований зданий и сооружений на основе экспериментальных и теоретических исследований физических и механических свойств слабых водонасыщенных глинистых грунтов, а также проблемами в области сейсмического строительства занимались М.Ю. Абелев, З.Г. Тер-Мартиросян, Р.Э. Татевосян, В.А. Пшеничкина, Л.Р. Ставницер, А.З. Тер-Мартиросян, Л.С. Амарян, В.А. Флорин, К. Терцаги, Н.А. Цытович, И.Т. Мирсаяпов, И.В. Королева и др. Количественная оценка НДС водонасыщенных оснований при изменении их механических свойств при статическом, динамическом и сейсмическом воздействиях была изучена в работах Ю.К. Зарецкого, М.Ю. Абелева, К. Терцаги, А.Л. Гольдина, З.Г. Тер-Мартиросяна, Л.Р. Ставницера, А.З. Тер-Мартиросяна и др. В данной работе рассматриваются расчетно-теоретические и численные решения различных задач по количественной оценке НДС водонасыщенных оснований зданий и сооружений в упругопластической и упруго-вязкой постановке.

При этом необходимо отметить, что на количественную оценку НДС оснований существенное влияние оказывают физико-механические характеристики грунтов (плотность, влажность, степень водонасыщения и др.). К сожалению, этому вопросу уделено слишком мало внимания. Между тем результаты расчетов, без учета этого фактора, могут отличаться в несколько раз.

Цель работы заключается в изучении и совершенствовании методов количественной оценки НДС водонасыщенного основания при статическом, динамическом и сейсмическом воздействиях, в том числе, аналитическим и численным методами при прогнозировании остаточных деформаций и перемещений грунтов оснований и фундаментов при учете степени водонасыщения $0.8 < S_r \le 0.99$.

Задачи исследования

В соответствии с поставленной целью необходимо решить следующие задачи:

1. Выполнить анализ существующих современных методов исследования и математического описания механических свойств водонасыщенных ($0,8 < S_r \leq 0,99$) грунтов для совершенствования методов решения прикладных задач механики грунтов при статическом, динамическом и сейсмическом воздействиях.

2. Изучить и проанализировать современные методы количественной оценки НДС оснований сооружений при ($0.8 < S_r \le 0.99$), включая расчеты дополнительных деформаций при динамических и сейсмических нагрузках.

3. Определить параметры динамических свойств грунтов, необходимых для расчетного обоснования задач, при динамических и сейсмических воздействиях с применением специализированных математических моделей.

4. Решить задачи по оценке дополнительных деформаций водонасыщенных $(0,8 < S_r \le 0.99)$ грунтов, в том числе в основании сооружений, аналитическим методом при статических нагрузках с учётом новых моделей грунтов.

5. Решить задачи по оценке дополнительных деформаций в основании (0,8 < $S_r \leq 0,99$) сооружений при статических, динамических и сейсмических нагрузках в упругопластической и упруго-вязкой постановке с использованием Plaxis и различных расчётных методов, в том числе LE, MC, HS и UBC3D-PLM и дать их анализ.

6. Дать сравнительную оценку полученных в диссертации результатов решения задач с использованием линейных, нелинейных и реологических свойств водонасыщенных ($0.8 < S_r \le 0.99$) грунтов при статическом, динамическом и сейскическом воздействиях.

Объект исследования – массив слабого водонасыщенного (0,8 < S_r ≤ 0,99) глинистого грунта, взаимодействующего с фундаментами зданий и сооружений.

Предмет исследования – механические свойства водонасыщенной грунтовой среды (0,8 < $S_r \leq 0,99$), и их использование при количественной оценке НДС слабого водонасыщенного (0,8 < $S_r \leq 0,99$) массива глинистого грунта, взаимодействующего с подземными конструкциями.

Научная новизна работы заключается в следующем:

1. Поставлены и решены задачи по количественной оценке НДС водонасыщенного ($0.8 < S_r \le 0.99$) массива грунта, в том числе определена осадка и несущая способность с использованием математических моделей LE, MC, HS и UBC3D-PLM.

2. Показано, что на результаты расчетов МКЭ существенно влияет использование специализированной математической модели UBC3d-PLM, учитывающей возникновение избыточного порового давления, особенно при $S_r = 0,999$, в том числе, при оценке возможности разжижения грунтов оснований при сейсмическом воздействии.

3. Дана сравнительная оценка НДС водонасыщенных (0,8 < S_r ≤ 0,99) оснований различных зданий и сооружений при статическом и динамическом воздействиях при использовании различных математических моделей.

4. Получено математически точное решение количественной оценки НДС основания конечной ширины с использованием системы уравнений Генки при различной степени водонасыщения ($S_r = 0.8 \dots 0.99$).

Теоретическая и практическая значимость работы заключается в:

1. Дан анализ и сравнение различных методов математического описания механических свойств водонасыщенных грунтов при статическом, динамическом и сейсмическом воздействиях с учетом $0.8 < S_r \leq 0.99$.

2. Дано научное обоснование процесса накопления дополнительных деформаций и напряжений, в том числе остаточных деформаций в водонасыщенном грунте при статическом, динамическом и сейсмическом воздействиях в зависимости от S_r .

3. Решены актуальные задачи по количественной оценке НДС водонасыщенных ($0,8 < S_r \le 0,99$) оснований зданий и сооружений аналитическим и численными методами, с учетом линейных, нелинейных и реологических свойств грунтов.

4. Получили развитие новые методы количественной оценки остаточных деформаций и напряжений в основаниях сооружений численными методами при статическом, динамическом и сейсмическом воздействиях.

Методология и методы исследований. Выполненные в данной работе исследования НДС грунтов основаны на экспериментальных и теоретических исследованиях физических и механических свойств водонасыщенных грунтов. Их анализ для определения параметров различных моделей грунтов по результатам динамического зондирования, трехосных испытаний и испытаний прямого сдвига используются при решении задач по оценке НДС водонасыщенного массива грунта, взаимодействующего с подземными конструкциями аналитическим методом и МКЭ (с использованием математических моделей LE, MC, HS и UBC3D-PLM).

Личный вклад автора. В рамках теоретической части диссертации автор лично решил аналитическим и численным методами задачи и выполнил их анализ с помощью ПК Plaxis, Mathcad и ПК surfer. На основании решения задач представлен анализ о НДС водонасыщенных оснований зданий и сооружений, в том числе, прогноз осадки и несущей способности оснований.

Положения, выносимые на защиту. Результаты аналитических и численных решений по количественной оценке НДС водонасыщенных оснований зданий при различных воздействиях, в том числе статическом, динамическом и сейсмическом с учетом нелинейных и реологических свойств грунтов и различной степени водонасыщения $0.8 < S_r \le 0.99$, полученные на основе решения МКЭ и физических уравнений Генки, в состав которых входят расчетные модели грунтовой среды, определенные по результатам полуточных испытаний, в том числе модель объемной деформации С.С. Григоряна, модель сдвиговых деформаций С.П. Тимошенко и модель водонасыщенной грунтовой среды 3. Г. Тер-Мартиросяна.

Степень достоверности результатов исследования. Достоверность полученных результатов расчетно-теоретических исследований в данной работе обеспечена применением известных положений и теоретических основ механики деформируемых сплошных сред и механики пористых водонасыщенных сред, а также использованием при решении задач МКЭ сертифицированного и многократно опробованного программного комплекса Plaxis.

Апробация работы. Основные положения диссертационной работы были изложены и обсуждены на двух международных научных конференциях:

- доклад на тему: «Simulation of soil liquefaction due to earthquake loading» на XXII International Scientific Conference «Construction. The formation of living environment», 2019 г., г. Ташкент, Узбекистан;

- доклад на тему: «Simulation of effects the degree of water-saturation on stressstrain state » на XXIV International Scientific Conference " Construction. The formation of living environment», 2021 г., г. Москва, Россия.

Публикации. Материалы диссертации достаточно полно изложены в 4 научных публикациях, из которых 2 работы опубликованы в журналах, включенных в перечень ВАК РФ, и 2 работы опубликованы в журналах, индексируемых в международной базе Scopus.

Объем и структура работы. Диссертация состоит из введения, 6 глав, заключения, списка литературы и одного приложения. Общий объем диссертации составляет 139 страниц, включая 83 рисунка, 18 таблиц. Список литературы включает 158 наименований, в том числе 40 иностранных источников.

Диссертационная работа выполнена на кафедре механики грунтов и геотехники (МГГ) НИУ МГСУ под руководством д.т.н. Тер-Мартиросяна А.З.

Автор выражает искреннюю благодарность Почетному члену РААСН, Заслуженному деятелю науки РФ, доктору технических наук Тер-Мартиросяну З.Г., а также своему научному руководителю, доктору технических наук Тер-Мартиросяну А.З. и сотрудникам научно-образовательного центра «Геотехника» (НОЦ «Геотехника») за ценные рекомендации и советы, постоянную поддержку и помощь во время работы над диссертацией.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Первая глава посвящена обзору современных методов прогноза НДС водонасыщенных (0,8 < S_r < 0,99) оснований зданий и сооружений при статическом и динамическом воздействиях. Методами расчета НДС и устойчивости грунтов оснований сооружений занимались Ю.К. Зарецкий, В.Н. Ломбардо, М.В. Малышев, З.Г. Тер-Мартиросян, Р.Э. Татевосян, Л.Н. Рассказов и многие другие.

Вторая глава посвящена теоретическим основам численного моделирования НДС водонасыщенных оснований зданий и сооружений при статическом и динамическом воздействиях. Представлено описание упругопластической модели UBC3D-PLM, позволяющей моделировать разжижение песчаных и глинистых грунтов под воздействием сейсмической нагрузкой.

<u>Третья глава</u> посвящена решению аналитической задачи по количественной оценке НДС водонасыщенных ($0,8 < S_r < 0,99$) оснований зданий и сооружений при статическом воздействии.

Отличительная особенность водонасыщенной грунтовой среды заключается в том, что в ней под воздействием кратковременной статической, пульсирующей, динамической и сейсмической нагрузок неизбежно возникает избыточное по отношению к гидростатическому давление в поровой воде в естественных условиях ($\gamma_w z$). Оно может составлять значительную часть приложенного общего (σ^{tot}) напряжения которое, как известно, распределяется между скелетом и поровой водой ($\sigma^{tot} = \sigma_s + u_w$) пропорционально соотношению их объемной сжимаемости (K_s/K_w), а также и их объема в единице объема (V_s/V_w) или (n_s/n_w) причем, как известно $n_s + n_w = n$, где n – пористость грунта ($n \le 1$). Это обусловлено тем, что при кратковременном воздействии из водонасыщенного грунта не происходит отток воды, и, следовательно, водонасыщенный грунт в этом промежутке находится в условиях закрытой системы, т.е. без дренажа (undrained). Физические и механические свойства водонасыщенного грунта 0,8 < S_r отличаются от свойств грунта в воздушно-сухом состоянии или при степени водонасыщения $S_r = w/w_{\Pi} < 0,8$, так как тотальное напряжение полностью воспринимается скелетом. Под величиной степени водонасыщения понимают также отношение удельного веса минеральных частиц γ_s и поровой воды, т.е.:

$$S_r = w(\rho_s / \rho_w), \tag{1}$$

Поэтому, механические свойства грунтов при $S_r < 0.8$ и $S_r \ge 0.8$ отличаются существенно, модули объемных деформаций скелета и поровой воды не равны, а модуль объемной деформации в целом:

$$\varepsilon_w = n\varepsilon = n\varepsilon_s$$
 и $\sigma_{tot} = \sigma_s + \sigma_m$, (2)

Определяется, исходя из соотношений (2) учитывая, что зависимости $K_s = \sigma_s / \varepsilon_s$ и $K_w = u_w / \varepsilon_w$, т.е. получим:

$$K_u = K_s + K_w/n, (3)$$

Коэффициент Пуассона грунта в целом определяется по формуле:

$$\nu_u = (K_u - 2G_s)/2(K_u + G_s), \tag{3}$$

Модуль объемной деформации поровой газосодержащей воды определяется по Скемптону в зависимости от S_r , K_u и K_{wq} в виде:

$$K_{w} = K_{wg} \cdot K_{u} / (S_{r}K_{u} + (1 - S_{r})K_{wg}),$$
(4)

Коэффициент начального порового давления $\beta_0 = \Delta u_w / \Delta \sigma_{tot}$ определяется по формуле:

$$\beta_0 = K_w / (n \cdot K_s + K_w), \tag{6}$$

При действии нагрузки на водонасыщенный массив местной нагрузки возникает неоднородное НДС и тогда:

$$u_w(x, y, z) = \beta_0 \sigma_m(x, y, z), \tag{5}$$

<u>Прогноз осадки линейно-деформируемого основания на основе уравнений</u> <u>Генки при $\varepsilon_x \neq 0, \varepsilon_y \neq 0$ </u>

В простейшем случае линейной зависимости между напряжениями и деформациями с параметрами среды G и K осадку можно определить аналитическим решением для оси z(x = 0). Тогда можем записать:

$$S = \int_0^{h_a} \frac{\sigma_m}{\kappa} dz + \int_0^{h_a} \frac{\sigma_z - \sigma_m}{2G} dz, \qquad (8)$$

где h_a - мощность сжимаемой толщи.

$$\sigma_{x} = \frac{p}{\pi} \left[\arctan \frac{a-x}{z} + \arctan \frac{a+x}{z} \right] + \frac{2apz(x^{2}-z^{2}-a^{2})}{\pi[(x^{2}+z^{2}-a^{2})^{2}+4a^{2}z^{2}]};$$

$$\sigma_{z} = \frac{p}{\pi} \left[\arctan \frac{a-x}{z} + \arctan \frac{a+x}{z} \right] - \frac{2apz(x^{2}-z^{2}-a^{2})}{\pi[(x^{2}+z^{2}-a^{2})^{2}+4a^{2}z^{2}]};$$

$$\sigma_{m} = \frac{2p \cdot (1+\nu)}{3\pi} \left[\arctan \frac{a-x}{z} + \arctan \frac{a+x}{z} \right];$$

$$\sigma_{z} - \sigma_{m} = \frac{2p}{\pi} \left(\frac{a \cdot z}{a^{2}+z^{2}} + \frac{1-2\nu}{3} \operatorname{acrt} g \frac{z}{a} \right) + \gamma_{xy}$$
(9)

Подставляя σ_m в первый интеграл (8), получаем осадку основания в пределах h_a от объемной составляющей линейной деформации $\varepsilon_{z,v}$:

$$S_{\nu} = \frac{4p(1+\nu)}{3\pi K_{w}} \left[h_{a} \operatorname{arctg} \frac{h_{a}}{a} + \frac{a}{2} \ln \frac{a^{2} + h_{a}^{2}}{a^{2}} \right],$$
(10)

Осадка основания от сдвиговой составляющей линейной деформаций $\varepsilon_{z,\gamma}$ в пределах h_a получим после подстановки во второй интеграл (8) $\sigma_z - \sigma_m$ тогда получаем:

$$S_{\gamma} = \frac{p}{3\pi G} \Big[(1 - 2\nu)h_a. \operatorname{arctg} \frac{h_a}{a} + (2 - \nu)a. \ln \frac{a^2 + h_a^2}{a^2} \Big], \tag{11}$$

Избыточное поровое давление в водонасыщенном основании в любой точке m(x, z) можно определить по формуле:

$$u_w(x,z) = \beta_0.\,\sigma_m(x,z),\tag{12}$$

На рисунке 1 построены графики $S_{\gamma} - p$, $S_{\nu} - p$ и $u_w(p)$ для точки на глубине z = b, полагая что, $K_w = f(s_r)$, $K_w(1) > K_w(2) > K_w(3)$.

Рисунок 1 - Графики $(S_{\gamma} - p) - (1)$, $(S_{\nu} - p) - (2 - 5)$, при разных K_{w} - $K_{w}(2) > K_{w}(3) > K_{w}(4) > K_{w}(5)$, и зависимости $u_{w}(p, S_{r})$, верхняя часть графика при $S_{r}(2) < S_{r}(3) <$ $S_{r}(4) < S_{r}(5)$ рассчитанные по формулам (8), (10), (11) и (12)

<u>Осадка и несущая способность водонасыщенного основания фундамента ко-</u> нечной ширины при $S_r = 0.8$

Из формулы $\varepsilon_z = \frac{\sigma_z - \sigma_m}{2G_0(1 - \tau_i/\tau_i^*)} + \varepsilon_m^*(1 - e^{-\alpha \sigma'_m})$, следует, что осадку j – того слоя конечной высоты h_j , в составе сжимаемой толщи основания, можно определить по формуле:

$$S_{j} = \left\{ \frac{\sigma_{z,j} - \sigma_{m,j}}{2G_{0,j} \left(1 - \tau_{i,j} / \tau_{i,j}^{*} \right)} + \varepsilon_{m,j}^{*} \left(1 - e^{-\alpha \sigma_{m,j}^{'}} \right) \right\} h_{j},$$
(13)

где $\tau_{i,j}^* = \sigma'_m tg\varphi + c, \sigma'_{m,j} = \sigma_{m,j}(1 - \beta_{0,j}); \sigma'_{m,j}$ - эффективное среднее давление.

$$S_j = S_j(\gamma) + S_j(\varepsilon), \tag{14}$$

$$S = \sum_{j=1}^{J=n} S_j, \tag{15}$$

На рисунке 2 представлена схема осадки основания фундамента конечной ширины методом суммирования осадок элементарных слоев $S'_j(h_j)$, а на рисунке 3 представлены зависимости $S_j(\gamma) - \sigma_{z,j}$ и $S_j(\varepsilon) - \sigma_{z,j}$, а также S_j .

Рисунок 2 - Расчетная схема осадки основания фундамента конечной ширины методом суммирования осадок элементарных слоев $S'_j(h_j)$ на основе модели Генки; НГСТ – нижняя граница сжимаемой толщи определяется по условиям СП - $\sigma_{zy} = 2\sigma_{zp}$

Рисунок 3 - Графики зависимости $S_j(\gamma) - 1$, $S_j(\varepsilon) - 2$ и $S_j = S_j(\gamma) + S_j(\varepsilon) - 3$ рассчитанные по формулам (13) при $S_r = 0,8$ по Генки

На рисунке 4 приводятся результаты расчёта осадки водонасыщенного основания при одной степени водонасыщения $S_r = 0.8$, но при различных значениях параметров деформируемости скелета грунта ($G^e, \nu^e, c, \varphi, \alpha$ и ε_m^*).

Рисунок 4 - Графики зависимости S - p полученные по формуле (13) и (14) при различных значениях параметров деформируемости скелета грунта(G^e, v^e , c, φ , α и ε_m^*) при $S_r = 0,8$ по Генки

На рисунке 5 приводятся результаты расчета осадки водонасыщенного фундамента (при *Sr*=0,8) при различных параметрах деформируемости слоев грунтового скелета (G^e, v^e, c , φ, α и ε_m^*), рассчитанные по формулам (13) и (14), а в таблице 1 приведены свойства грунтов этих слоев.

Рисунок 5 - Графики зависимости S_j для слоев 1-6, рассчитанные по формулам (13) и (14) и S-7 суммарная осадка, рассчитанная по (15) при Sr = 0.8Таблица 1 - Свойства грунтов при Sr = 0.8

№ слоя	h, [м]	Модуль сдвига на началь- ном участке кривой, G^{e} , [кПа]	Коэффи- циент Пуассона V	Удельное сцепление - <i>с</i> , [кПа]	Угол внутрен- него тре- ния - <i>ф</i> [град]	Предельно возможная деформа- ция- ε^*	Параметр - α
1	0 - 2	25000	0,33	3	30	0,035	0,05
2	2 - 4	20000	0,33	6	26	0,035	0,05
3	4 - 6	25000	0,33	4	32	0,035	0,05
4	6 - 8	30000	0,35	8	36	0,035	0,05
5	8 - 10	40000	0,35	12	38	0,035	0,05
6	10 - 12	45000	0,35	16	40	0,035	0,05

На рисунке 6 приводятся результаты расчета осадки водонасыщенного основания при различных значениях степени водонасыщенности, рассчитанные по формулам (13).

Рисунок 6 - Графики зависимости S (суммарная) для слоя, рассчитанные по формулам (14) при различных значениях Sr; Sr = 0.8 - a, Sr = 0.9 - b и Sr = 0.9999

На рисунке 7 представлены зависимости S - p полученные различными методами (LE–Linear lastic, MC– Mohr-Coloumb, HS – hardening soil и UBC3D-PLM).

10

Рисунок 7 - Графики зависимости S - p, полученные при $S_r = 0,8 - (a)$ и $S_r = 0,9999 - (6)$ по методам LE - 1, MC - 2, HS - 3, UBC3D - 4

<u>Четвертая глава</u> посвящена НДС водонасыщенного основания фундамента конечной ширины при статических и динамических нагрузках.

Рассмотрены результаты прогноза НДС водонасыщенного основания фундамента конечной ширины (рисунок 8), при динамической периодической нагрузке $q_{dy} = 0.2 \times q_{st} \times sin(2\pi w.t)$ (рисунок 9), где w = 50 Грц, T = 1/w = 0.02 sec, причем $q_{st} = 100$ кПа. В таблице 2 представлены параметры грунтов, используемые в модели.

Рисунок 8 - Расчетная схема модели основания под воздействием статической $p_{st} = const$ и динамической $q_{dy} = 0.2 \times q_{st} \times sin(2\pi w.t)$ нагрузок, действующих по полосе шириной b = 4m (плоская задача)

Рисунок 9 - Динамическая нагрузка: запись динамического воздействия

Parameters	Unit	Linear Elastic	Mohr-coloumb	HS	UBC3D-PLM
Drainage type	-	Undrained (A)	Undrained (A)	Undrained (A)	Undrained (A)
$\gamma_{ m unsat}$	кН/м ³	19,70	19,70	19,70	19,70
$\gamma_{ m sat}$	кН/м ³	21,80	21,80	21,80	21,80
e _{init}	-	0.74	0.74	0.74	0.74
φ	0	-	30	30	30
ψ	0	-	0	0	0
С	кН/м ²	-	10	10	10
v _{un}	-	0.3	0.3	0.3	-
E/E ₅₀ ref	кН/м ²	$46,77 \times 10^{3}$	$46,77 \times 10^{3}$	$46,77 \times 10^{3}$	-
E _{oed} ref	кН/м ²	-	-	37.34×10^3	-
E _{ur} ref	кН/м ²	-	-	140×10^{3}	-
k _x	м/сут	0,00001	0,00001	0,00001	0,00001
k _y	м/сут	0,00001	0,00001	0,00001	0,00001
Rayleigh α	-	0,2094	0,2094	0,2094	0,2094
Rayleigh β	-	0,01061	0,01061	0,01061	0,01061
Pref	кН/м ²	-	-	100	100
М	-	-	-	0.5	-
Knc0	-	-	-	0,5	-
Rf	-	-	-	0,9	0,9
K_B^e	-	-	-	-	854.6
K_G^e	-	-	-	-	598.2
K_G^P	-	-	-	-	250
те	-	-	-	-	0.5
ne	-	-	-	-	0.5
пр	-	-	-	-	0.5
$arphi_p$	-	-	-	-	30.77
(N1) ₆₀	-	-	-	-	7.65
f _{dens}	-	-	-	-	0.2
f_{Epost}	-	-	-	-	0.2

Таблица 2 - Параметры грунтов, используемые в модели

На рисунке 10 представлены результаты численного моделирования.

Рисунок 10 - Изополя касательных напряжений Mohr-Coulomb, Hardening soil и UBC3D-PLM методами при степени водонасыщенности Sr=0,8 и Sr=0,9999

В этом случае максимальная плошадь при $\tau_{ref} = 1$ возникает при использовании модели UBC3D-PLM. Это есть следствие особенности модели, в которой взаимодействие поровой воды, и собственного нагрузка для чувствительных и динамических воздействий. Следует отметить, что полимодационный процесс (S - t_{dyn}) при модели UBC3D- PLM развивается с большей скоростью, при $S_r = 0,9999$, чем при $S_r = 0,8$, при этом накопленная осадка в 2 раза больше. Данные величины осадки основания представлены на рисунке 11, где представлены изменения осадки с динамическим временем.

13

Рисунок 11 - Сравнение изменения вертикального перемещения на поверхности под фундаментом от времени динамического воздействия с разной степенью водонасыщенности; p_{st}= 100 кПа, p_{dy}= 25sin (2π×50t)

Наблюдаются остаточные поровые давления, с ростом S_r растёт u_w до 130 кН/м² при UBC3D-PLM. На рисунке 12 показана схема избыточного порового давления u_w со временем динамического воздействия при ($S_r = 0.8 \ u \ S_r = 0.9999$) для четрырех моделей, где избыточное поровое давление увеличивается с увеличением степени водоносыщености S_r .

В полученных результатах видно, что наибольшее влияние на НДС водонасыщенного основания возникает с использованием модели UBC3D-PLM.

Результаты расчетов с использованием модели UBC3D-PLM, по сравнению с другими моделями, показали, что перемещение увеличивается в зависимости от количества циклов, что приводит к обрушению в результате развивающегося разжижения, и это обрушение будет происходить быстрее при степени насыщения (S_r=0,9999) по сравнению с результатами степени насыщения (S_r=0,8).

Результаты показали влияние степени водонасыщенности на поровое давление, где поровое давление при (S_r=0,9999) минимум в 7 раз больше порового давления при (S_r=0,8).

<u>Пятая глава</u> посвящена НДС водонасыщенных оснований высотных зданий при сейсмических воздействиях.

Отличительная особенность оснований высотных зданий, заключается в том, что они опираются на фундаменты, с большой площадью опирания и возводятся в глубоких котлованах.

Во взаимодействии с надземной и подземной частями высотного здания вовлекаются огромные массы грунта как под плитным фундаментом, так и за ограждением котлована. При сейсмическом воздействии в этих массивах возникает неоднородное НДС, которое трансформируются во времени и в пространстве, в том числе с переходом в разжиженное состояние при сейсмических нагрузках.

В настоящей главе приводится количественная оценка НДС в массивах грунтов, под воздействием сейсмических нагрузок, взаимодействующих с подземной и надземной частями высотного здания с учётом линейной (LE) и нелинейной модели грунта (MC, HS, UBC3D-PLM) (при степени водонасыщения $S_r = 0,8$ и $S_r = 0,9999$). Расчетная схема взаимодействия здания и основания представлена на рисунке 13.

Рисунок 13 - Расчетная схема модели. Многоэтажное здание с тремя этажами в подвале: высота h – (15, 45 и 75) метров, соотношение сторон h/b – (1,75, 3,75 и 6,25), нагрузка на каждый этаж p = 20 кH/м²

На рисунке 14 представлена запись сейсмического воздействия на основание.

Рисунок 14 - Динамическая нагрузка: запись сейсмического воздействия (22,5 сек)

Для наблюдения изменений с динамическим временем, были выбраны две точки: в верхней части здания (точка А) и в нижней части здания (точка В). На

рисунке 15 показано расположение этих точек в здании, которые используются для данного исследования.

Рисунок 15 - Расположение точек (А и В) в здании, используемые для изучения сравнения

На рисунке 16 приводится сравнительная оценка кривых осадки-время (S - t) для здания 5, 15 и 25 этажей методами LE, MC, HS и UBC3D-PLM при $S_r = 0,8$ и $S_r = 0,9999$. Наиболее сильная сейсмическая нагрузка следствие на основание здания 25 этажей.

Рисунок 16 - Сравнение горизонтального перемещения в точке (А) от времени сейсмического воздействия, при степени водонасыщенности Sr=0,8 и Sr=0,9999

На рисунке 17 представлены изополя при $\tau_{ref} = const$, и в этом случае наблюдается доминирующая роль метода UBC3D-PLM, хотя во всех методах области $\tau_{ref} = 1$ занимают центральное положение под фундаментом, однако площади с $\tau_{ref} = 1$ в методе UBC3D-PLM на много больше.

Результаты расчетов с использованием модели UBC3D-PLM, по сравнению с другими моделями, показали, что перемещения увеличиваются в зависимости от времени воздействия землетрясения, что приводит к обрушению в результате развивающегося разжижения, и это обрушение будет происходить быстрее при сте-

пени водонасыщения (Sr=0,9999), по сравнению с результатами степени водонасыщения (Sr=0,8).

Результаты показали влияние степени водонасыщения на поровое давление, где поровое давление при (Sr=0,9999) в 10 раз больше порового давления при (Sr=0,8).

Наибольшая плошадь изополя по τ_{ref} возникает в основном как при Sr =0,99, так и при Sr =0,8 по модели UBC3D-PLM.

Шестая глава посвящена НДС водонасыщенного основания дамбы при статическом и сейсмическом воздействиях.

Дамбы и насыпи играют важную роль в строительстве и освоении экономически перспективных территорий, где распространены слабые водонасыщенные грунты, особенно в сейсмических активных регионах, в том числе САР.

В настоящей главе рассматриваются задачи по количественной оценке МКЭ основания и дамбы с учетом их взаимодействия под воздействием их собственного веса, внешний нагрузки на верхней части дамбы и также сейсмической нагрузки, на основание и на дамбу, с учётом линейной (LE) и нелинейных моделей грунта (MC, HS, UBC3D-PLM). На рисунке 18 представлена расчетная схема дамбы.

Рисунок 18 - Расчётная схема НДС дамбы на водонасыщенном основании На рисунке 19 показано расположение 4 точек, которые используются для данного исследования.

Рисунок 19 - Расположение точек А, В, С И D в дамбе, используемые для изучения сравнения

По результатам анализа этих расчётов можно отметить следующее.

Согласно четырем методам: линейному (LE) и нелинейному (MC, HS и UBC3D-PLM) (таблица 3) величины максимального горизонтального перемещения при степени водонасыщенности $S_r = 0,8$, и при степени водонасыщенности $S_r = 0,9999$, и коэффициент разницы между ними $S_{x_{(0,8)}}^{max}/S_{x_{(0,9999)}}^{max}$. Значение этого коэффициента в методе UBC3D-PLM больше 6 и находится в точке B, а это озна-

чает, что с увеличением степени водонасыщения произошло обрушение бортов дамбы в точке В. Эти результаты представлены в таблице 3 и на рисунке 20.

	· 1	1		, r ,
Me	год	$S_{x_{(0,8)}}^{max}$	$S_{x_{(0,9999)}}^{max}$	$S_{x_{(0,8)}}^{max}/S_{x_{(0,9999)}}^{max}$
линейно-	упругий метод	73,3	61,2	0,83
Нелинейные методы	MC	151,1	85,8	0,57
	HS	78,7	65	0,83
	UBC3D-PLM	93	583,6	6,28

Таблица 3 - Горизонтальное перемещение (мм), при $S_r = 0.8 \text{ M} S_r = 0.99999$

LE — MC — HS

Рисунок 20 - Горизонтальное перемещение в разных местах от времени сейсмического воздействия

И соответствует разным значениям с порового давления, при Sr =0,8, так и при Sr=0,9999, приписываются в методе UBC3D-PLM, соответственно: -16,54

кН/м² и -506,83. Эти результаты показаны в таблице 4, где видно, что коэффициент $u_{w_{(0,8)}}^{max}/u_{w_{(0,9999)}}^{max}$, в различных методах.

	1	1 1	$r = 1 \sim r$	$v, v \sim r$
Me	год	$u_{w_{(0,8)}}^{max}$ (кH/м ²)	<i>u^{max}</i> _{w(0,9999)} (кН/м ²)	$u_{w_{(0,8)}}^{max}/u_{w_{(0,9999)}}^{max}$
линейно-	упругий метод	2,81	113,39	40,35
ные	MC	4,094	129,5	31,63
Нелиней методи	HS	3,64	166,16	45,65
	UBC3D-PLM	16,54	506,83	30,64

Таблица 4 - Избыточное поровое давление воды при $S_r = 0.8$ и $S_r = 0.9999$

Рисунок 21 - Изополя касательных напряжений Mohr-Coulomb, Hardening soil и UBC3D-PLM методами при степени водонасыщенности Sr=0,8 и Sr=0,9999 под действием сейсмических нагрузок, время =22,5 сек

Как и следовало ожидать, наибольшая плошадь изополя по τ_{ref} возникает в дамбе в основном как при $S_r = 0,9999$, так и при $S_r = 0,8$ по модели UBC3D-PLM (рисунок 21).

Результаты моделирования показали разницу в поведении разрушения дамбы под действием собственного веса и внешней нагрузки в модели UBC3D-PLM в водонасыщенных грунтах с различной степенью водонасыщенности. По сравнению с упругим поведением (модель Linear elastic) и с неупругим поведением в моделях (Mohr-Coloumb и Hardening soil), был предложен лучший способ решения этой проблемы при статических нагрузках.

Результаты моделирования показали разницу в поведении разрушения дамбы при сейсмической нагрузке в модели UBC3D-PLM в водонасыщенных грунтах с различной степенью водонасыщения. И по сравнению с упругим поведением (модель Linear elastic), и с неупругим поведением в моделях (Mohr-Coloumb и Hardening soil), был предложен лучший способ решения этой проблемы при сейсмической нагрузке.

ЗАКЛЮЧЕНИЕ

В заключении диссертационной работы приводятся итоги выполненных исследований, которые позволяют сделать следующие выводы:

1. Выполнен анализ современных методов изучения и описания механических свойств водонасыщенных грунтов и на их основе сделан выбор современных моделей грунтовой среды при степени водонасыщения $0.8 < S_r < 0.99$ при решении задач.

2. Освоена и внедрена новая модель (UBC 3D), позволяющая численно моделировать водонасыщенные массивы грунтов МКЭ. Выполнен сравнительный анализ с другими современными моделями грунтов (LE, MC, HS) при статическом, динамическом и сейсмических воздействиях, в том числе НДС при возникновении разжижения.

3. Дано аналитическое решение задачи по прогнозу осадки и несущей способности водонасыщенного основания ($0,8 < S_r < 0,99$) с учетом нелинейных свойств скелета грунта. Показана возможность нелинейного развития зависимости осадка-нагрузка (s - p), в том числе с двойной кривизной с переходом от затухающей к незатухающей и прогрессирующей стадии.

4. Проведены комплексные исследования НДС водонасыщенных оснований высотных зданий и ответственных сооружений с учетом различных моделей грунтов, в том числе LE, MC, HS и UBC 3D-PLM. Показана их существенная разница по НДС и по предельному состоянию.

5. Изучены, проанализированы и даны решения задач по определению дополнительных осадок и кренов фундаментов с использованием современных методов количественной оценки НДС водонасыщенных $0.8 < S_r < 0.99$ оснований зданий и сооружений.

6. Дана сравнительная оценка НДС водонасыщенных оснований при 0.8 < S < 0.99. Отмечена существенная их разница, особенно, в развитии областей предельного равновесия ($\tau_{rel} \leq 1$) и областей формирования с избыточным по отно-

шению к гидростатическому давлению в поровом пространстве массива ($U_w \approx \sigma$).

7. Отмечается, что при выполнении в настоящей работе исследования физико-механических свойств грунтов и количественный прогноз НДС оснований высотных зданий и сооружений использованы современные методы теоретической и прикладной механики грунтов, в том числе методы, разработанные в НОЦ «Геотехника» НИУ МГСУ за последние 30 лет.

Рекомендации и перспективы дальнейшей разработки темы:

Выполненные исследования по теме диссертации позволяют:

<u>Развить методы</u> количественной оценки НДС водонасыщенных массивов с учетом разной степени водонасыщения и разных параметров механических свойств грунта, а также при разных S_r и разной интенсивности воздействия.

<u>Развить методы</u> количественной оценки дополнительных осадок и кренов фундаментов конечной ширины при различных параметрах расчетных моделей оснований и при разных степенях водонасыщения для условий Сирийской Арабской Республики (САР).

Результаты выполненных исследований в настоящей работе предлагается использовать в научно-исследовательской работе в НИУ МГСУ и в университете САР в г. Дамаске.

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ АВТОРОМ ПО ТЕМЕ ДИС-СЕРТАЦИИ

Публикации в изданиях, включенных в Перечень рецензируемых научных изданий:

1. Тер-Мартиросян А. З., Осман А. Моделирование разжижения грунтов основания при сейсмическом воздействии с использованием модели UBC3D-PLM // Строительство и архитектура. 2019. Т. 7. № 3. С. 39-44. DOI: 10.29039/2308-0191-2019-7-3-39-44.

2. Тер-Мартиросян З. Г., Тер-Мартиросян А. З., Осман А. Осадка и несущая способность водонасыщенного основания фундамента конечной ширины при статическом воздействии // Вестник МГСУ. 2021. Т. 16. № 4. С. 463-472. DOI: 10.22227/1997-0935.2021.4.463-472.

В журналах, индексируемых в базах Scopus, Web of Science и др.:

1. Ter-Martirosyan A., Othman A. Simulation of soil liquefaction due to earthquake loading // E3S Web of Conferences. 2019. T. 97. C. 03025. DOI: 10.1051/e3sconf/20199703025.

2. Ter-Martirosyan A., Othman A. Simulation of Effects the Degree of Water-Saturation on Stress–Strain State //Lecture Notes in Civil Engineering. 2022. T. 170. C. 163-174. DOI: 10.1007/978-3-030-79983-0_15.